Properties

Label 145656v
Number of curves $1$
Conductor $145656$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 145656v1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 145656v do not have complex multiplication.

Modular form 145656.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} - q^{7} - 3 q^{11} + 2 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 145656v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
145656.bm1 145656v1 \([0, 0, 0, -797691, 274688822]\) \(-130098552670514/257298363\) \(-111017730898335744\) \([]\) \(1741824\) \(2.1587\) \(\Gamma_0(N)\)-optimal