Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
1456.a1 |
1456k1 |
1456.a |
1456k |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.080276374$ |
$1$ |
|
$12$ |
$864$ |
$0.135290$ |
$4019679/8918$ |
$1.11550$ |
$3.37286$ |
$[0, 0, 0, 53, 250]$ |
\(y^2=x^3+53x+250\) |
728.2.0.? |
$[(13, 56)]$ |
1456.b1 |
1456f1 |
1456.b |
1456f |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{19} \cdot 7 \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3360$ |
$1.007584$ |
$-1207949625/332678528$ |
$1.06089$ |
$4.85996$ |
$[0, 0, 0, -355, -56222]$ |
\(y^2=x^3-355x-56222\) |
728.2.0.? |
$[]$ |
1456.c1 |
1456c1 |
1456.c |
1456c |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 7 \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$3.963292106$ |
$1$ |
|
$2$ |
$1344$ |
$0.808213$ |
$530208386048/439239619$ |
$0.96694$ |
$4.46790$ |
$[0, 1, 0, 1071, -8501]$ |
\(y^2=x^3+x^2+1071x-8501\) |
182.2.0.? |
$[(30, 227)]$ |
1456.d1 |
1456g3 |
1456.d |
1456g |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{13} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.486052662$ |
$1$ |
|
$2$ |
$2592$ |
$1.373604$ |
$-424962187484640625/182$ |
$1.05379$ |
$6.71503$ |
$[0, -1, 0, -250608, 48371776]$ |
\(y^2=x^3-x^2-250608x+48371776\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 728.2.0.?, $\ldots$ |
$[(288, 40)]$ |
1456.d2 |
1456g2 |
1456.d |
1456g |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{15} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6552$ |
$144$ |
$3$ |
$0.162017554$ |
$1$ |
|
$8$ |
$864$ |
$0.824298$ |
$-795309684625/6028568$ |
$0.94067$ |
$4.90602$ |
$[0, -1, 0, -3088, 67520]$ |
\(y^2=x^3-x^2-3088x+67520\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 728.2.0.?, 819.36.0.?, 2184.48.1.?, $\ldots$ |
$[(8, 208)]$ |
1456.d3 |
1456g1 |
1456.d |
1456g |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{21} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.486052662$ |
$1$ |
|
$4$ |
$288$ |
$0.274992$ |
$37595375/46592$ |
$0.87083$ |
$3.55498$ |
$[0, -1, 0, 112, 448]$ |
\(y^2=x^3-x^2+112x+448\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 728.2.0.?, $\ldots$ |
$[(24, 128)]$ |
1456.e1 |
1456l1 |
1456.e |
1456l |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{23} \cdot 7^{7} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7392$ |
$1.564314$ |
$-10824513276632329/21926008832$ |
$0.99602$ |
$6.21160$ |
$[0, -1, 0, -73736, -7695632]$ |
\(y^2=x^3-x^2-73736x-7695632\) |
728.2.0.? |
$[]$ |
1456.f1 |
1456e1 |
1456.f |
1456e |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 7^{5} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$480$ |
$0.363437$ |
$-86044336128/218491$ |
$0.99544$ |
$4.21884$ |
$[0, 0, 0, -584, -5444]$ |
\(y^2=x^3-584x-5444\) |
182.2.0.? |
$[]$ |
1456.g1 |
1456j1 |
1456.g |
1456j |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.471942741$ |
$1$ |
|
$2$ |
$160$ |
$-0.243182$ |
$110592/91$ |
$0.71571$ |
$2.73653$ |
$[0, 0, 0, 16, -16]$ |
\(y^2=x^3+16x-16\) |
182.2.0.? |
$[(1, 1)]$ |
1456.h1 |
1456d1 |
1456.h |
1456d |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.362508900$ |
$1$ |
|
$4$ |
$192$ |
$0.002399$ |
$-135834624/15379$ |
$0.86662$ |
$3.35704$ |
$[0, 0, 0, -68, 236]$ |
\(y^2=x^3-68x+236\) |
182.2.0.? |
$[(1, 13)]$ |
1456.i1 |
1456i3 |
1456.i |
1456i |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( 2^{17} \cdot 7^{3} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.101 |
2B |
$56$ |
$48$ |
$0$ |
$6.357395233$ |
$1$ |
|
$1$ |
$17280$ |
$2.143154$ |
$22868021811807457713/8953460393696$ |
$1.08758$ |
$7.26222$ |
$[0, 0, 0, -946139, -354106230]$ |
\(y^2=x^3-946139x-354106230\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.p.1.5, 28.12.0-4.c.1.2, 56.48.0-56.bp.1.7 |
$[(-14169/5, 34146/5)]$ |
1456.i2 |
1456i4 |
1456.i |
1456i |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( 2^{17} \cdot 7^{12} \cdot 13^{2} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.49 |
2B |
$56$ |
$48$ |
$0$ |
$1.589348808$ |
$1$ |
|
$7$ |
$17280$ |
$2.143154$ |
$3389174547561866673/74853681183008$ |
$1.05145$ |
$7.00010$ |
$[0, 0, 0, -500699, 133740682]$ |
\(y^2=x^3-500699x+133740682\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.k.1.2, 56.48.0-56.v.1.3 |
$[(-771, 7840)]$ |
1456.i3 |
1456i2 |
1456.i |
1456i |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( 2^{22} \cdot 7^{6} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.2 |
2Cs |
$56$ |
$48$ |
$0$ |
$3.178697616$ |
$1$ |
|
$7$ |
$8640$ |
$1.796581$ |
$8511781274893233/3440817243136$ |
$1.08472$ |
$6.17812$ |
$[0, 0, 0, -68059, -3752310]$ |
\(y^2=x^3-68059x-3752310\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 8.24.0-8.a.1.1, 28.24.0-28.b.1.2, 56.48.0-56.d.1.1 |
$[(-65, 630)]$ |
1456.i4 |
1456i1 |
1456.i |
1456i |
$4$ |
$4$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{32} \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.60 |
2B |
$56$ |
$48$ |
$0$ |
$1.589348808$ |
$1$ |
|
$7$ |
$4320$ |
$1.450006$ |
$71903073502287/60782804992$ |
$1.03131$ |
$5.52267$ |
$[0, 0, 0, 13861, -426358]$ |
\(y^2=x^3+13861x-426358\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.p.1.3, 14.6.0.b.1, 28.24.0-28.g.1.1, $\ldots$ |
$[(31, 182)]$ |
1456.j1 |
1456a1 |
1456.j |
1456a |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{11} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.267954550$ |
$1$ |
|
$6$ |
$96$ |
$-0.301737$ |
$-31250/91$ |
$0.83978$ |
$2.71457$ |
$[0, 1, 0, -8, 20]$ |
\(y^2=x^3+x^2-8x+20\) |
728.2.0.? |
$[(2, 4)]$ |
1456.k1 |
1456h3 |
1456.k |
1456h |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 7^{9} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$4.303018462$ |
$1$ |
|
$2$ |
$2592$ |
$1.053251$ |
$-178643795968/524596891$ |
$1.15023$ |
$4.94690$ |
$[0, -1, 0, -1877, 77789]$ |
\(y^2=x^3-x^2-1877x+77789\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.2, 36.24.0-9.a.1.1, 117.36.0.?, $\ldots$ |
$[(-20, 327)]$ |
1456.k2 |
1456h1 |
1456.k |
1456h |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 7 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$3276$ |
$144$ |
$3$ |
$4.303018462$ |
$1$ |
|
$2$ |
$288$ |
$-0.045361$ |
$-43614208/91$ |
$0.87141$ |
$3.55769$ |
$[0, -1, 0, -117, -451]$ |
\(y^2=x^3-x^2-117x-451\) |
3.4.0.a.1, 9.12.0.a.1, 12.8.0-3.a.1.1, 36.24.0-9.a.1.2, 117.36.0.?, $\ldots$ |
$[(68, 549)]$ |
1456.k3 |
1456h2 |
1456.k |
1456h |
$3$ |
$9$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{12} \cdot 7^{3} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$3276$ |
$144$ |
$3$ |
$1.434339487$ |
$1$ |
|
$2$ |
$864$ |
$0.503945$ |
$224755712/753571$ |
$0.95798$ |
$3.99750$ |
$[0, -1, 0, 203, -2499]$ |
\(y^2=x^3-x^2+203x-2499\) |
3.12.0.a.1, 12.24.0-3.a.1.1, 117.36.0.?, 182.2.0.?, 468.72.0.?, $\ldots$ |
$[(12, 39)]$ |
1456.l1 |
1456b1 |
1456.l |
1456b |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 7^{3} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$2.650071309$ |
$1$ |
|
$2$ |
$192$ |
$-0.158746$ |
$-1024/4459$ |
$0.96270$ |
$2.93854$ |
$[0, -1, 0, -1, -51]$ |
\(y^2=x^3-x^2-x-51\) |
182.2.0.? |
$[(12, 39)]$ |
1456.m1 |
1456m1 |
1456.m |
1456m |
$1$ |
$1$ |
\( 2^{4} \cdot 7 \cdot 13 \) |
\( - 2^{8} \cdot 7 \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96$ |
$-0.469602$ |
$-65536/91$ |
$0.78564$ |
$2.45202$ |
$[0, -1, 0, -5, -7]$ |
\(y^2=x^3-x^2-5x-7\) |
182.2.0.? |
$[]$ |