Properties

Label 145200cx
Number of curves $2$
Conductor $145200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 145200cx have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 145200cx do not have complex multiplication.

Modular form 145200.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 2 q^{7} + q^{9} - 4 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 145200cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
145200.jm1 145200cx1 \([0, 1, 0, -561005408, 4990391299188]\) \(129392980254539/3583180800\) \(540732985202914099200000000\) \([2]\) \(68124672\) \(3.9091\) \(\Gamma_0(N)\)-optimal
145200.jm2 145200cx2 \([0, 1, 0, 120466592, 16342351875188]\) \(1281177907381/765275040000\) \(-115486624867067688960000000000\) \([2]\) \(136249344\) \(4.2556\)