Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+367x-12762\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+367xz^2-12762z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+29700x-9392625\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(513/16, 11625/64)$ | $4.2657860578822771763388907364$ | $\infty$ |
| $(18, 0)$ | $0$ | $2$ |
Integral points
\( \left(18, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 145200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-74868750000$ | = | $-1 \cdot 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 11^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{16384}{225} \) | = | $2^{14} \cdot 3^{-2} \cdot 5^{-2}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.76732147823793018855255777390$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.86792035636536107123571849436$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9750800338716483$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.7301893721371595$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.2657860578822771763388907364$ |
|
| Real period: | $\Omega$ | ≈ | $0.53390442509647509423778033897$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.1100882112727841018249650004 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.110088211 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.533904 \cdot 4.265786 \cdot 16}{2^2} \\ & \approx 9.110088211\end{aligned}$$
Modular invariants
Modular form 145200.2.a.ji
For more coefficients, see the Downloads section to the right.
| Modular degree: | 110592 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II$ | additive | -1 | 4 | 4 | 0 |
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $11$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 220 = 2^{2} \cdot 5 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 217 & 4 \\ 216 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 177 & 4 \\ 134 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 184 & 1 \\ 119 & 0 \end{array}\right),\left(\begin{array}{rr} 169 & 56 \\ 164 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[220])$ is a degree-$50688000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/220\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 275 = 5^{2} \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $18$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $42$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 145200cw
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 7260q1, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.2129600.2 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.367350888960000.193 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.4535196160000.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | add | ord | ord | ord | ss | ss | ss | ord | ss | ord | ord |
| $\lambda$-invariant(s) | - | 2 | - | 3 | - | 1 | 1 | 1 | 1,1 | 1,1 | 1,1 | 1 | 1,1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.