Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-303508x+435556328\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-303508xz^2+435556328z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-24584175x+317594315610\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 145200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-80203164852780499200$ | = | $-1 \cdot 2^{8} \cdot 3 \cdot 5^{2} \cdot 11^{15} $ |
|
| j-invariant: | $j$ | = | \( -\frac{272709010000}{7073843073} \) | = | $-1 \cdot 2^{4} \cdot 3^{-1} \cdot 5^{4} \cdot 7^{3} \cdot 11^{-9} \cdot 43^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4998524217044165679053471400$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.57056701285958436049609404784$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0867417331219253$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.484980161695638$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.16134961452891587050535974894$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.9042930615204856690964754809 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.904293062 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.161350 \cdot 1.000000 \cdot 2}{1^2} \\ & \approx 2.904293062\end{aligned}$$
Modular invariants
Modular form 145200.2.a.is
For more coefficients, see the Downloads section to the right.
| Modular degree: | 3732480 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_0^{*}$ | additive | -1 | 4 | 8 | 0 |
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
| $11$ | $2$ | $I_{9}^{*}$ | additive | -1 | 2 | 15 | 9 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 660 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 655 & 6 \\ 654 & 7 \end{array}\right),\left(\begin{array}{rr} 531 & 2 \\ 10 & 7 \end{array}\right),\left(\begin{array}{rr} 119 & 654 \\ 357 & 641 \end{array}\right),\left(\begin{array}{rr} 329 & 654 \\ 327 & 641 \end{array}\right),\left(\begin{array}{rr} 278 & 387 \\ 1 & 166 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[660])$ is a degree-$1824768000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/660\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 9075 = 3 \cdot 5^{2} \cdot 11^{2} \) |
| $3$ | split multiplicative | $4$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $10$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 145200ck
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 3300a2, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-165}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.3300.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.1437480000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.62875375200000.15 | \(\Z/3\Z\) | not in database |
| $6$ | 6.0.7187400000.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.0.745698077982648734216385024000000000000000.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.2.2237094233947946202649155072000000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 9 | - | 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | - | 1 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.