Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2-95349008x-352933998012\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z-95349008xz^2-352933998012z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-7723269675x-257265714741750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6152, 29250)$ | $2.9682459978817010610228863358$ | $\infty$ |
| $(-6197, 0)$ | $0$ | $2$ |
Integral points
\( \left(-6197, 0\right) \), \((-6152,\pm 29250)\), \((434848,\pm 286679250)\)
Invariants
| Conductor: | $N$ | = | \( 145200 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $1677717626232582000000000$ | = | $2^{10} \cdot 3^{16} \cdot 5^{9} \cdot 11^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{3382175663521924}{59189241375} \) | = | $2^{2} \cdot 3^{-16} \cdot 5^{-3} \cdot 11^{-1} \cdot 94561^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.4448450098071866864611666597$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.86355576672433013594878843622$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.07876989573691$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.614463325271159$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.9682459978817010610228863358$ |
|
| Real period: | $\Omega$ | ≈ | $0.048365052684894773096369511219$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 256 $ = $ 2\cdot2^{4}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.1877999404336979762061834150 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.187799940 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.048365 \cdot 2.968246 \cdot 256}{2^2} \\ & \approx 9.187799940\end{aligned}$$
Modular invariants
Modular form 145200.2.a.kp
For more coefficients, see the Downloads section to the right.
| Modular degree: | 35389440 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
| $5$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
| $11$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.14 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 440 = 2^{3} \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 344 & 437 \\ 435 & 438 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 433 & 8 \\ 432 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 384 & 157 \\ 381 & 352 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 434 & 435 \end{array}\right),\left(\begin{array}{rr} 36 & 439 \\ 97 & 434 \end{array}\right),\left(\begin{array}{rr} 59 & 58 \\ 178 & 395 \end{array}\right)$.
The torsion field $K:=\Q(E[440])$ is a degree-$202752000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 3025 = 5^{2} \cdot 11^{2} \) |
| $3$ | split multiplicative | $4$ | \( 48400 = 2^{4} \cdot 5^{2} \cdot 11^{2} \) |
| $5$ | additive | $18$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
| $11$ | additive | $72$ | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 145200.kp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1320.m1, its twist by $220$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{55}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-11}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-5}, \sqrt{-11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.7086244000000.1 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.72563138560000.25 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.937024000000.18 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | split | add | ord | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 4 | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.