Properties

Label 145200.kk
Number of curves $1$
Conductor $145200$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("kk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 145200.kk1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 + 5 T + 17 T^{2}\) 1.17.f
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 145200.kk do not have complex multiplication.

Modular form 145200.2.a.kk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{7} + q^{9} - 5 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 145200.kk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
145200.kk1 145200ba1 \([0, 1, 0, -25208, 88293588]\) \(-625/1188\) \(-3367383148800000000\) \([]\) \(2073600\) \(2.2340\) \(\Gamma_0(N)\)-optimal