Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+8784x-181008\)
|
(homogenize, simplify) |
\(y^2z=x^3+8784xz^2-181008z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+8784x-181008\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1857/4, 81567/8)$ | $2.5784765185101864809569492166$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 145008 \) | = | $2^{4} \cdot 3^{2} \cdot 19 \cdot 53$ |
|
Discriminant: | $\Delta$ | = | $-57530747695104$ | = | $-1 \cdot 2^{12} \cdot 3^{6} \cdot 19^{3} \cdot 53^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{25102282752}{19266931} \) | = | $2^{12} \cdot 3^{3} \cdot 19^{-3} \cdot 53^{-2} \cdot 61^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.3283610335935458369993389210$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.085907708699545681884484181081$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8896150397850966$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.269428250278541$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5784765185101864809569492166$ |
|
Real period: | $\Omega$ | ≈ | $0.34950020278835661799135011163$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot2\cdot3\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.814136793251911302259092597 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.814136793 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.349500 \cdot 2.578477 \cdot 12}{1^2} \\ & \approx 10.814136793\end{aligned}$$
Modular invariants
Modular form 145008.2.a.cn
For more coefficients, see the Downloads section to the right.
Modular degree: | 353280 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II^{*}$ | additive | -1 | 4 | 12 | 0 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$53$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 38.2.0.a.1, level \( 38 = 2 \cdot 19 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 37 & 2 \\ 36 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 2 \\ 21 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 37 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[38])$ is a degree-$369360$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/38\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 171 = 3^{2} \cdot 19 \) |
$3$ | additive | $6$ | \( 848 = 2^{4} \cdot 53 \) |
$19$ | split multiplicative | $20$ | \( 7632 = 2^{4} \cdot 3^{2} \cdot 53 \) |
$53$ | split multiplicative | $54$ | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 145008y consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1007a1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.76.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.4417659378432.1 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | ord | ss | ord | split | ord | ord | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | - | - | 3 | 1 | 1 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 2 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.