Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-363x-1366\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-363xz^2-1366z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-363x-1366\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-11, 36)$ | $0.58940673608273510008294260677$ | $\infty$ |
| $(-5, 18)$ | $1.1073972755556106689383902533$ | $\infty$ |
Integral points
\((-13,\pm 34)\), \((-11,\pm 36)\), \((-5,\pm 18)\), \((22,\pm 36)\), \((25,\pm 72)\), \((74,\pm 614)\), \((97,\pm 936)\), \((1249,\pm 44136)\)
Invariants
| Conductor: | $N$ | = | \( 145008 \) | = | $2^{4} \cdot 3^{2} \cdot 19 \cdot 53$ |
|
| Discriminant: | $\Delta$ | = | $2255164416$ | = | $2^{10} \cdot 3^{7} \cdot 19 \cdot 53 $ |
|
| j-invariant: | $j$ | = | \( \frac{7086244}{3021} \) | = | $2^{2} \cdot 3^{-1} \cdot 11^{6} \cdot 19^{-1} \cdot 53^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.49129587863409551965819972020$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.63563291616658041722044966614$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.816032508497164$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.465118650028921$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.57365626468495505239624105419$ |
|
| Real period: | $\Omega$ | ≈ | $1.1365380006004276009674419190$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2^{2}\cdot1\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $10.431714305551176002000807216 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.431714306 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.136538 \cdot 0.573656 \cdot 16}{1^2} \\ & \approx 10.431714306\end{aligned}$$
Modular invariants
Modular form 145008.2.a.bb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 47104 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $53$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 6042 = 2 \cdot 3 \cdot 19 \cdot 53 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 4771 & 2 \\ 4771 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 6041 & 0 \end{array}\right),\left(\begin{array}{rr} 2281 & 2 \\ 2281 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2015 & 2 \\ 2015 & 3 \end{array}\right),\left(\begin{array}{rr} 6041 & 2 \\ 6040 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[6042])$ is a degree-$137204203069440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/6042\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 9063 = 3^{2} \cdot 19 \cdot 53 \) |
| $3$ | additive | $8$ | \( 16112 = 2^{4} \cdot 19 \cdot 53 \) |
| $19$ | nonsplit multiplicative | $20$ | \( 7632 = 2^{4} \cdot 3^{2} \cdot 53 \) |
| $53$ | nonsplit multiplicative | $54$ | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 145008.bb consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 24168.r1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.3.3021.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.6.27570978261.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ord | ord | ss | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | nonsplit |
| $\lambda$-invariant(s) | - | - | 4 | 4 | 2,2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.