Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-579x+5362\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-579xz^2+5362z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-579x+5362\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{4}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(11, 18)$ | $0$ | $4$ |
Integral points
\((11,\pm 18)\), \( \left(14, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 144 \) | = | $2^{4} \cdot 3^{2}$ |
|
| Discriminant: | $\Delta$ | = | $2239488$ | = | $2^{10} \cdot 3^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{28756228}{3} \) | = | $2^{2} \cdot 3^{-1} \cdot 193^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.25052744853417022774722800236$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.87640134626650570913142138398$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0561716345991692$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.176793496057813$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $2.4901297791911182554352223877$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.2450648895955591277176111939 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.245064890 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 2.490130 \cdot 1.000000 \cdot 8}{4^2} \\ & \approx 1.245064890\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 32 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.96.0.126 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 48.192.1-48.em.1.6, level \( 48 = 2^{4} \cdot 3 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 16 & 43 \\ 45 & 14 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 16 \\ 12 & 25 \end{array}\right),\left(\begin{array}{rr} 38 & 29 \\ 1 & 18 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 46 & 35 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 44 & 45 \end{array}\right),\left(\begin{array}{rr} 33 & 16 \\ 32 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[48])$ is a degree-$6144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/48\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 9 = 3^{2} \) |
| $3$ | additive | $8$ | \( 16 = 2^{4} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 144b
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 24a3, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.2.12.1-24.1-a6 |
| $4$ | 4.0.1728.1 | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{3})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.2985984.1 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.47775744.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.8.12230590464.1 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $8$ | 8.2.725594112.2 | \(\Z/12\Z\) | not in database |
| $16$ | 16.0.5258930030792146944.5 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.36520347436056576.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | 16.0.1346286087882789617664.40 | \(\Z/16\Z\) | not in database |
| $16$ | 16.0.1846757322198614016.2 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 |
|---|---|---|
| Reduction type | add | add |
| $\lambda$-invariant(s) | - | - |
| $\mu$-invariant(s) | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.