Properties

Label 144150fe
Number of curves $1$
Conductor $144150$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fe1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 144150fe1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 144150fe do not have complex multiplication.

Modular form 144150.2.a.fe

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 5 q^{7} - q^{8} + q^{9} + 3 q^{11} - q^{12} + 2 q^{13} - 5 q^{14} + q^{16} + 4 q^{17} - q^{18} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 144150fe

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
144150.bf1 144150fe1 \([1, 1, 0, -4266875, -5043967875]\) \(-18456465033174511/12914016300000\) \(-6011272806145312500000\) \([]\) \(18278400\) \(2.8791\) \(\Gamma_0(N)\)-optimal