Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-29100x+1910000\) | (homogenize, simplify) | 
| \(y^2z=x^3-29100xz^2+1910000z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-29100x+1910000\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(94, 72)$ | $0.66774532061943270346321691682$ | $\infty$ | 
| $(110, 200)$ | $0.74378380724178805172206776713$ | $\infty$ | 
| $(100, 0)$ | $0$ | $2$ | 
Integral points
      
    \((-194,\pm 504)\), \((-140,\pm 1800)\), \((-50,\pm 1800)\), \((40,\pm 900)\), \((85,\pm 225)\), \((94,\pm 72)\), \( \left(100, 0\right) \), \((104,\pm 92)\), \((110,\pm 200)\), \((125,\pm 475)\), \((136,\pm 684)\), \((190,\pm 1800)\), \((325,\pm 5175)\), \((500,\pm 10600)\), \((910,\pm 27000)\), \((1790,\pm 75400)\)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 14400 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2}$ |  | 
| Discriminant: | $\Delta$ | = | $1119744000000$ | = | $2^{15} \cdot 3^{7} \cdot 5^{6} $ |  | 
| j-invariant: | $j$ | = | \( \frac{7301384}{3} \) | = | $2^{3} \cdot 3^{-1} \cdot 97^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2743783203279115393210035840$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.94608075592312513044853885290$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0374920117698965$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.433332282630211$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 2$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.44664155280585782028299791832$ |  | 
| Real period: | $\Omega$ | ≈ | $0.85548427253571424207402959393$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2^{2} $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $6.1135171821814572105674415404 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 6.113517182 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.855484 \cdot 0.446642 \cdot 64}{2^2} \\ & \approx 6.113517182\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 32768 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{5}^{*}$ | additive | 1 | 6 | 15 | 0 | 
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.12.0.11 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 120 = 2^{3} \cdot 3 \cdot 5 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 23 & 0 \\ 0 & 119 \end{array}\right),\left(\begin{array}{rr} 113 & 8 \\ 112 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 114 & 115 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 96 & 65 \\ 25 & 36 \end{array}\right),\left(\begin{array}{rr} 104 & 45 \\ 35 & 94 \end{array}\right),\left(\begin{array}{rr} 24 & 55 \\ 5 & 114 \end{array}\right)$.
The torsion field $K:=\Q(E[120])$ is a degree-$737280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) | 
| $3$ | additive | $8$ | \( 1600 = 2^{6} \cdot 5^{2} \) | 
| $5$ | additive | $14$ | \( 576 = 2^{6} \cdot 3^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 14400bt
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 96b2, its twist by $-120$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | not in database | 
| $2$ | \(\Q(\sqrt{15}) \) | \(\Z/4\Z\) | not in database | 
| $4$ | \(\Q(\sqrt{6}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.1911029760000.128 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.8.1911029760000.4 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.0.849346560000.34 | \(\Z/8\Z\) | not in database | 
| $8$ | 8.2.29023764480000.10 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/12\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | - | - | - | 2 | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 | 
| $\mu$-invariant(s) | - | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
