Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-19380x-1038400\)
|
(homogenize, simplify) |
\(y^2z=x^3-19380xz^2-1038400z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-19380x-1038400\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-80, 0)$ | $0$ | $2$ |
Integral points
\( \left(-80, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 14400 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2}$ |
|
Discriminant: | $\Delta$ | = | $30233088000$ | = | $2^{12} \cdot 3^{10} \cdot 5^{3} $ |
|
j-invariant: | $j$ | = | \( \frac{2156689088}{81} \) | = | $2^{6} \cdot 3^{-4} \cdot 17^{3} \cdot 19^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0973965681506557091748401238$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.54741623485186953959020444943$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.107234206134163$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.305970214070712$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.40463373721237040310078227925$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.80926747442474080620156455849 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.809267474 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.404634 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 0.809267474\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 24576 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}^{*}$ | additive | -1 | 6 | 12 | 0 |
$3$ | $2$ | $I_{4}^{*}$ | additive | -1 | 2 | 10 | 4 |
$5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.135 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 240 = 2^{4} \cdot 3 \cdot 5 \), index $192$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 4 \\ 68 & 39 \end{array}\right),\left(\begin{array}{rr} 15 & 76 \\ 44 & 175 \end{array}\right),\left(\begin{array}{rr} 59 & 70 \\ 234 & 179 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right),\left(\begin{array}{rr} 56 & 15 \\ 209 & 32 \end{array}\right),\left(\begin{array}{rr} 237 & 224 \\ 8 & 229 \end{array}\right),\left(\begin{array}{rr} 45 & 196 \\ 224 & 59 \end{array}\right),\left(\begin{array}{rr} 7 & 16 \\ 8 & 87 \end{array}\right)$.
The torsion field $K:=\Q(E[240])$ is a degree-$2949120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 45 = 3^{2} \cdot 5 \) |
$3$ | additive | $8$ | \( 1600 = 2^{6} \cdot 5^{2} \) |
$5$ | additive | $10$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 14400.l
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2400.p1, its twist by $24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.288000.1 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.82944000000.15 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.82944000000.22 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.725594112000000.16 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | add | add | add |
$\lambda$-invariant(s) | - | - | - |
$\mu$-invariant(s) | - | - | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.