Properties

Label 14400.do
Number of curves $4$
Conductor $14400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("do1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14400.do have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14400.do do not have complex multiplication.

Modular form 14400.2.a.do

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 6 q^{11} - 4 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 14400.do

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14400.do1 14400cy4 \([0, 0, 0, -348300, 20682000]\) \(57960603/31250\) \(2519424000000000000\) \([2]\) \(221184\) \(2.2220\)  
14400.do2 14400cy2 \([0, 0, 0, -204300, -35542000]\) \(8527173507/200\) \(22118400000000\) \([2]\) \(73728\) \(1.6727\)  
14400.do3 14400cy1 \([0, 0, 0, -12300, -598000]\) \(-1860867/320\) \(-35389440000000\) \([2]\) \(36864\) \(1.3261\) \(\Gamma_0(N)\)-optimal
14400.do4 14400cy3 \([0, 0, 0, 83700, 2538000]\) \(804357/500\) \(-40310784000000000\) \([2]\) \(110592\) \(1.8754\)