Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-2462x+141252\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-2462xz^2+141252z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3191427x+6638121342\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-33, 450)$ | $1.6984529434012778900601517075$ | $\infty$ |
$(256, 3918)$ | $2.1236275959134835961576025469$ | $\infty$ |
Integral points
\( \left(-68, 38\right) \), \( \left(-68, 30\right) \), \( \left(-33, 450\right) \), \( \left(-33, -417\right) \), \( \left(16, 318\right) \), \( \left(16, -334\right) \), \( \left(256, 3918\right) \), \( \left(256, -4174\right) \)
Invariants
Conductor: | $N$ | = | \( 143922 \) | = | $2 \cdot 3 \cdot 17^{2} \cdot 83$ |
|
Discriminant: | $\Delta$ | = | $-7789290066576$ | = | $-1 \cdot 2^{4} \cdot 3^{5} \cdot 17^{6} \cdot 83 $ |
|
j-invariant: | $j$ | = | \( -\frac{68417929}{322704} \) | = | $-1 \cdot 2^{-4} \cdot 3^{-5} \cdot 83^{-1} \cdot 409^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1582819378391253129251513661$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.25832473418898272719961594284$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9061889513754705$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1366622559263777$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.6013751622384525525335802188$ |
|
Real period: | $\Omega$ | ≈ | $0.64284332785236463572675680425$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.2604799765528657379163891351 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.260479977 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.642843 \cdot 3.601375 \cdot 4}{1^2} \\ & \approx 9.260479977\end{aligned}$$
Modular invariants
Modular form 143922.2.a.g
For more coefficients, see the Downloads section to the right.
Modular degree: | 394240 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$3$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$83$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 996 = 2^{2} \cdot 3 \cdot 83 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 995 & 2 \\ 994 & 3 \end{array}\right),\left(\begin{array}{rr} 665 & 2 \\ 665 & 3 \end{array}\right),\left(\begin{array}{rr} 499 & 2 \\ 499 & 3 \end{array}\right),\left(\begin{array}{rr} 85 & 2 \\ 85 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 995 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[996])$ is a degree-$108010893312$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/996\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 71961 = 3 \cdot 17^{2} \cdot 83 \) |
$3$ | nonsplit multiplicative | $4$ | \( 47974 = 2 \cdot 17^{2} \cdot 83 \) |
$5$ | good | $2$ | \( 47974 = 2 \cdot 17^{2} \cdot 83 \) |
$17$ | additive | $146$ | \( 498 = 2 \cdot 3 \cdot 83 \) |
$83$ | split multiplicative | $84$ | \( 1734 = 2 \cdot 3 \cdot 17^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 143922bc consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 498b1, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.996.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.988047936.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 83 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | ord | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ord | ss | split |
$\lambda$-invariant(s) | 14 | 2 | 8 | 8 | 2 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | 3 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.