Properties

Label 143650d
Number of curves $2$
Conductor $143650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143650d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143650d do not have complex multiplication.

Modular form 143650.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} + q^{4} - 2 q^{6} + 2 q^{7} + q^{8} + q^{9} - 4 q^{11} - 2 q^{12} + 2 q^{14} + q^{16} + q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 143650d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143650.bd2 143650d1 \([1, 0, 0, -38113, -2492283]\) \(81182737/11492\) \(866713891062500\) \([2]\) \(1032192\) \(1.5922\) \(\Gamma_0(N)\)-optimal
143650.bd1 143650d2 \([1, 0, 0, -587363, -173309033]\) \(297141543217/7514\) \(566697544156250\) \([2]\) \(2064384\) \(1.9388\)