Properties

Label 143550eb
Number of curves $1$
Conductor $143550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 143550eb1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143550eb do not have complex multiplication.

Modular form 143550.2.a.eb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3 q^{7} - q^{8} + q^{11} + 2 q^{13} + 3 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 143550eb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143550.m1 143550eb1 \([1, -1, 0, -7067817, 8151467341]\) \(-3427931074939043401/535193190400000\) \(-6096184934400000000000\) \([]\) \(8686080\) \(2.9088\) \(\Gamma_0(N)\)-optimal