Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-69102x-6974924\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-69102xz^2-6974924z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1105635x-447500770\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1805393460681/2646588025, 2161493134338397561/136153720946125)$ | $28.422387408273853290094920385$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 143550 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $-2723823352800$ | = | $-1 \cdot 2^{5} \cdot 3^{6} \cdot 5^{2} \cdot 11^{5} \cdot 29 $ |
|
| j-invariant: | $j$ | = | \( -\frac{2002311132699145}{149455328} \) | = | $-1 \cdot 2^{-5} \cdot 5 \cdot 11^{-5} \cdot 29^{-1} \cdot 73709^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4357370912300539311425905291$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.61819129482364902301150802177$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9274124342337671$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.793337790223439$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $28.422387408273853290094920385$ |
|
| Real period: | $\Omega$ | ≈ | $0.14722944169691101164799377664$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.1846122298134729569680169842 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.184612230 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.147229 \cdot 28.422387 \cdot 1}{1^2} \\ & \approx 4.184612230\end{aligned}$$
Modular invariants
Modular form 143550.2.a.s
For more coefficients, see the Downloads section to the right.
| Modular degree: | 396000 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
| $11$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $29$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 38280 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 29 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 12766 & 12765 \\ 6375 & 25516 \end{array}\right),\left(\begin{array}{rr} 37126 & 12765 \\ 11595 & 25516 \end{array}\right),\left(\begin{array}{rr} 38271 & 10 \\ 38270 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 25519 & 0 \\ 0 & 38279 \end{array}\right),\left(\begin{array}{rr} 28606 & 12765 \\ 12315 & 25516 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 38225 & 38161 \end{array}\right),\left(\begin{array}{rr} 28711 & 25530 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 28711 & 6390 \\ 0 & 36367 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[38280])$ is a degree-$6638068039680000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/38280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 71775 = 3^{2} \cdot 5^{2} \cdot 11 \cdot 29 \) |
| $3$ | additive | $2$ | \( 15950 = 2 \cdot 5^{2} \cdot 11 \cdot 29 \) |
| $5$ | additive | $10$ | \( 261 = 3^{2} \cdot 29 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 13050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
| $29$ | split multiplicative | $30$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 143550.s
consists of 2 curves linked by isogenies of
degree 5.
Twists
The minimal quadratic twist of this elliptic curve is 15950.l1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-3}) \) | \(\Z/5\Z\) | not in database |
| $3$ | 3.1.63800.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.10387762880000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.109901880000.1 | \(\Z/10\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
| $16$ | deg 16 | \(\Z/15\Z\) | not in database |
| $20$ | 20.4.68809855842733898193362762820906937122344970703125.1 | \(\Z/5\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | ord | nonsplit | ord | ord | ss | ord | split | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | - | - | 1 | 3 | 1 | 1 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.