Properties

Label 143550.fd
Number of curves $2$
Conductor $143550$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143550.fd have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143550.fd do not have complex multiplication.

Modular form 143550.2.a.fd

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 2 q^{7} + q^{8} - q^{11} + q^{13} + 2 q^{14} + q^{16} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 143550.fd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143550.fd1 143550j2 \([1, -1, 1, -1727555, -873593053]\) \(-2002311132699145/149455328\) \(-42559739887500000\) \([]\) \(1980000\) \(2.2405\)  
143550.fd2 143550j1 \([1, -1, 1, 14620, -117403]\) \(758553353975/451245278\) \(-205598629788750\) \([]\) \(396000\) \(1.4357\) \(\Gamma_0(N)\)-optimal