Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3-x^2-75042x+10568866\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3-x^2z-75042xz^2+10568866z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-1200675x+675206750\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-1, 3263)$ | $1.3980522148427882204490470983$ | $\infty$ | 
| $(179, 1598)$ | $2.0993035945833607676078264619$ | $\infty$ | 
| $(-1309/4, 1309/8)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-55, 3839\right) \), \( \left(-55, -3784\right) \), \( \left(-1, 3263\right) \), \( \left(-1, -3262\right) \), \( \left(135, 1631\right) \), \( \left(135, -1766\right) \), \( \left(179, 1598\right) \), \( \left(179, -1777\right) \), \( \left(429, 7348\right) \), \( \left(429, -7777\right) \), \( \left(579, 12398\right) \), \( \left(579, -12977\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 143550 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 29$ |  | 
| Discriminant: | $\Delta$ | = | $-21038053239843750$ | = | $-1 \cdot 2 \cdot 3^{7} \cdot 5^{8} \cdot 11^{4} \cdot 29^{2} $ |  | 
| j-invariant: | $j$ | = | \( -\frac{4102915888729}{1846962150} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{3} \cdot 11^{-4} \cdot 29^{-2} \cdot 2287^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8388403687593494371024461392$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48481526820824440410444385413$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.8800159661276452$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.862619495705056$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 2$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.6219534367101176210627981134$ |  | 
| Real period: | $\Omega$ | ≈ | $0.35821093868839943407474962741$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2\cdot2^{2}\cdot2\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $7.5136992140896490330625864319 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |  | 
BSD formula
$$\begin{aligned} 7.513699214 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.358211 \cdot 2.621953 \cdot 32}{2^2} \\ & \approx 7.513699214\end{aligned}$$
Modular invariants
Modular form 143550.2.a.c
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1720320 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 | 
| $11$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $29$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3480 = 2^{3} \cdot 3 \cdot 5 \cdot 29 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2177 & 1306 \\ 1304 & 2175 \end{array}\right),\left(\begin{array}{rr} 1162 & 1 \\ 1159 & 0 \end{array}\right),\left(\begin{array}{rr} 3477 & 4 \\ 3476 & 5 \end{array}\right),\left(\begin{array}{rr} 697 & 4 \\ 1394 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 2641 & 4 \\ 1802 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1739 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[3480])$ is a degree-$2011535769600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 225 = 3^{2} \cdot 5^{2} \) | 
| $3$ | additive | $8$ | \( 15950 = 2 \cdot 5^{2} \cdot 11 \cdot 29 \) | 
| $5$ | additive | $18$ | \( 5742 = 2 \cdot 3^{2} \cdot 11 \cdot 29 \) | 
| $11$ | nonsplit multiplicative | $12$ | \( 13050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 29 \) | 
| $29$ | nonsplit multiplicative | $30$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 143550.c
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 9570.k2, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.2.2018400.3 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.0.2346588610560000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | ord | nonsplit | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord | 
| $\lambda$-invariant(s) | 8 | - | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 
| $\mu$-invariant(s) | 1 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
