Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-11210742x-23811891084\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-11210742xz^2-23811891084z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-179371875x-1524140401250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 143550 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 29$ |
|
| Discriminant: | $\Delta$ | = | $-154829963969524800000000$ | = | $-1 \cdot 2^{12} \cdot 3^{21} \cdot 5^{8} \cdot 11 \cdot 29^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{547191377002890625}{543710161539072} \) | = | $-1 \cdot 2^{-12} \cdot 3^{-15} \cdot 5^{7} \cdot 11^{-1} \cdot 19^{6} \cdot 29^{-2} \cdot 53^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1455057838494108229214302892$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5232410312259557274899681153$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1308130790272077$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.163215237871362$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.039660822948803974607236106845$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2^{2}\cdot1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.5382926687234543748631108381 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 2.538292669 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.039661 \cdot 1.000000 \cdot 16}{1^2} \\ & \approx 2.538292669\end{aligned}$$
Modular invariants
Modular form 143550.2.a.bg
For more coefficients, see the Downloads section to the right.
| Modular degree: | 19353600 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
| $3$ | $4$ | $I_{15}^{*}$ | additive | -1 | 2 | 21 | 15 |
| $5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $29$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 132 = 2^{2} \cdot 3 \cdot 11 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 89 & 2 \\ 89 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 67 & 2 \\ 67 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 131 & 2 \\ 130 & 3 \end{array}\right),\left(\begin{array}{rr} 13 & 2 \\ 13 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 131 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[132])$ is a degree-$30412800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/132\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
| $3$ | additive | $6$ | \( 7975 = 5^{2} \cdot 11 \cdot 29 \) |
| $5$ | additive | $10$ | \( 5742 = 2 \cdot 3^{2} \cdot 11 \cdot 29 \) |
| $11$ | split multiplicative | $12$ | \( 13050 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 29 \) |
| $29$ | nonsplit multiplicative | $30$ | \( 4950 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 143550.bg consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 47850.k1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.3300.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.1437480000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | add | ord | split | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | - | - | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.