Properties

Label 143550.a
Number of curves $1$
Conductor $143550$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 143550.a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143550.a do not have complex multiplication.

Modular form 143550.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 5 q^{7} - q^{8} - q^{11} - 2 q^{13} + 5 q^{14} + q^{16} - 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 143550.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143550.a1 143550dc1 \([1, -1, 0, 22293, -20885499]\) \(13445617758139/2074607935488\) \(-189048648121344000\) \([]\) \(2396160\) \(1.9944\) \(\Gamma_0(N)\)-optimal