Properties

Label 143325.y
Number of curves $6$
Conductor $143325$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("y1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143325.y have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143325.y do not have complex multiplication.

Modular form 143325.2.a.y

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 3 q^{8} - 4 q^{11} + q^{13} - q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 143325.y

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143325.y1 143325bh6 \([1, -1, 1, -1506842105, -22512037578978]\) \(282352188585428161201/20813369346315\) \(27891905527714737408046875\) \([2]\) \(56623104\) \(3.9328\)  
143325.y2 143325bh3 \([1, -1, 1, -516521480, 4518470339772]\) \(11372424889583066401/50586128775\) \(67790250647472371484375\) \([2]\) \(28311552\) \(3.5863\)  
143325.y3 143325bh4 \([1, -1, 1, -100327730, -303175597728]\) \(83339496416030401/18593645841225\) \(24917263735150783409765625\) \([2, 2]\) \(28311552\) \(3.5863\)  
143325.y4 143325bh2 \([1, -1, 1, -32799605, 68229089772]\) \(2912015927948401/184878500625\) \(247754872732848837890625\) \([2, 2]\) \(14155776\) \(3.2397\)  
143325.y5 143325bh1 \([1, -1, 1, 1653520, 4490808522]\) \(373092501599/6718359375\) \(-9003244110589599609375\) \([2]\) \(7077888\) \(2.8931\) \(\Gamma_0(N)\)-optimal
143325.y6 143325bh5 \([1, -1, 1, 225736645, -1865023953978]\) \(949279533867428399/1670570708285115\) \(-2238724523528701181076796875\) \([2]\) \(56623104\) \(3.9328\)