Properties

Label 143325.er
Number of curves $4$
Conductor $143325$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("er1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143325.er have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143325.er do not have complex multiplication.

Modular form 143325.2.a.er

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 3 q^{8} + q^{13} - q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 143325.er

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143325.er1 143325ei3 \([1, -1, 0, -6212817, 5961249216]\) \(19790357598649/2998905\) \(4018819517148515625\) \([2]\) \(3538944\) \(2.5825\)  
143325.er2 143325ei4 \([1, -1, 0, -2574567, -1531230534]\) \(1408317602329/58524375\) \(78428259807802734375\) \([2]\) \(3538944\) \(2.5825\)  
143325.er3 143325ei2 \([1, -1, 0, -424692, 74726091]\) \(6321363049/1863225\) \(2496899700003515625\) \([2, 2]\) \(1769472\) \(2.2359\)  
143325.er4 143325ei1 \([1, -1, 0, 71433, 7749216]\) \(30080231/36855\) \(-49389224835234375\) \([2]\) \(884736\) \(1.8893\) \(\Gamma_0(N)\)-optimal