Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+3887x-78212\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+3887xz^2-78212z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+5038173x-3664161954\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(122, 1427)$ | $2.9337677482565994667294987787$ | $\infty$ |
$(44, 400)$ | $0$ | $3$ |
Integral points
\( \left(44, 400\right) \), \( \left(44, -445\right) \), \( \left(122, 1427\right) \), \( \left(122, -1550\right) \), \( \left(434, 8915\right) \), \( \left(434, -9350\right) \)
Invariants
Conductor: | $N$ | = | \( 1430 \) | = | $2 \cdot 5 \cdot 11 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-6424482779000$ | = | $-1 \cdot 2^{3} \cdot 5^{3} \cdot 11^{3} \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{6497225437879799}{6424482779000} \) | = | $2^{-3} \cdot 5^{-3} \cdot 7^{3} \cdot 11^{-3} \cdot 13^{-6} \cdot 19^{3} \cdot 23^{3} \cdot 61^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1445668724805566239667056808$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1445668724805566239667056808$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9587948753540011$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.011424377065711$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.9337677482565994667294987787$ |
|
Real period: | $\Omega$ | ≈ | $0.40948779071785009794452548550$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ 1\cdot3\cdot1\cdot( 2 \cdot 3 ) $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.4026841474257534679574617951 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.402684147 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.409488 \cdot 2.933768 \cdot 18}{3^2} \\ & \approx 2.402684147\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2592 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$13$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3Cs.1.1 | 3.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 51480 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \cdot 13 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9370 & 9 \\ 32751 & 51472 \end{array}\right),\left(\begin{array}{rr} 38611 & 25758 \\ 0 & 50051 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 12871 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 25731 & 51472 \end{array}\right),\left(\begin{array}{rr} 35647 & 18 \\ 12060 & 463 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 10287 & 51472 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 51463 & 18 \\ 51462 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[51480])$ is a degree-$6886586843136000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/51480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 55 = 5 \cdot 11 \) |
$3$ | good | $2$ | \( 1 \) |
$5$ | split multiplicative | $6$ | \( 286 = 2 \cdot 11 \cdot 13 \) |
$11$ | nonsplit multiplicative | $12$ | \( 130 = 2 \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 110 = 2 \cdot 5 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 1430.c
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$3$ | 3.1.440.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.85184000.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.5227200.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$9$ | 9.3.2036310046875.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.115517082859107972940280518092243000000000000.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.111957082389109746826171875.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.2283843154731368840232560505865426299236352.1 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | split | ord | nonsplit | split | ord | ord | ss | ord | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.