Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-2080231x+1289857069\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-2080231xz^2+1289857069z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-2695979403x+60220011110598\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-6749/4, 6745/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 142970 \) | = | $2 \cdot 5 \cdot 17 \cdot 29^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-143575889534466490000$ | = | $-1 \cdot 2^{4} \cdot 5^{4} \cdot 17^{6} \cdot 29^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1673672305534489}{241375690000} \) | = | $-1 \cdot 2^{-4} \cdot 5^{-4} \cdot 13^{3} \cdot 17^{-6} \cdot 9133^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5983918379811880179676896753$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.91474392298795100437605365912$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9921013018955642$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.673821424600775$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.17750450014441049708562947560$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $2.8400720023105679533700716096 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.840072002 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.177505 \cdot 1.000000 \cdot 64}{2^2} \\ & \approx 2.840072002\end{aligned}$$
Modular invariants
Modular form 142970.2.a.z
For more coefficients, see the Downloads section to the right.
| Modular degree: | 7741440 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $17$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $29$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.5 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 59160 = 2^{3} \cdot 3 \cdot 5 \cdot 17 \cdot 29 \), index $384$, genus $9$, and generators
$\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right),\left(\begin{array}{rr} 11775 & 42862 \\ 3422 & 16763 \end{array}\right),\left(\begin{array}{rr} 53039 & 0 \\ 0 & 59159 \end{array}\right),\left(\begin{array}{rr} 59137 & 24 \\ 59136 & 25 \end{array}\right),\left(\begin{array}{rr} 33873 & 34684 \\ 25172 & 46865 \end{array}\right),\left(\begin{array}{rr} 47619 & 20416 \\ 3886 & 22563 \end{array}\right),\left(\begin{array}{rr} 29581 & 30624 \\ 22446 & 6265 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 314 & 335 \end{array}\right),\left(\begin{array}{rr} 13 & 24 \\ 58452 & 57853 \end{array}\right),\left(\begin{array}{rr} 14791 & 30624 \\ 261 & 6265 \end{array}\right)$.
The torsion field $K:=\Q(E[59160])$ is a degree-$4924239563980800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/59160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 841 = 29^{2} \) |
| $3$ | good | $2$ | \( 8410 = 2 \cdot 5 \cdot 29^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 28594 = 2 \cdot 17 \cdot 29^{2} \) |
| $17$ | nonsplit multiplicative | $18$ | \( 8410 = 2 \cdot 5 \cdot 29^{2} \) |
| $29$ | additive | $422$ | \( 170 = 2 \cdot 5 \cdot 17 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 142970p
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 170b2, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{29}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.972196.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{29})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.6585030000.2 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.15122640998656.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.13395834241024.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.945165062416.1 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.616164348047977092966017059826100000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 17 | 29 |
|---|---|---|---|---|---|
| Reduction type | split | ord | nonsplit | nonsplit | add |
| $\lambda$-invariant(s) | 3 | 0 | 0 | 0 | - |
| $\mu$-invariant(s) | 1 | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.