Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-117041608x+5598031689712\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-117041608xz^2+5598031689712z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-9480370275x+4080936660689250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(619642/81, 1654411850/729)$ | $11.371960883192068780846870220$ | $\infty$ |
$(-19943, 0)$ | $0$ | $2$ |
Integral points
\( \left(-19943, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 142800 \) | = | $2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-13435196873897431245312000000$ | = | $-1 \cdot 2^{15} \cdot 3^{32} \cdot 5^{6} \cdot 7^{2} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{2770540998624539614657}{209924951154647363208} \) | = | $-1 \cdot 2^{-3} \cdot 3^{-32} \cdot 7^{-2} \cdot 17^{-2} \cdot 383^{3} \cdot 36671^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.0769951061000132592524189092$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.5791289693230177625348071211$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0817271650752718$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.085498764322765$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.371960883192068780846870220$ |
|
Real period: | $\Omega$ | ≈ | $0.032789890221995634336762295980$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.9661655834991432658155822550 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.966165583 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.032790 \cdot 11.371961 \cdot 64}{2^2} \\ & \approx 5.966165583\end{aligned}$$
Modular invariants
Modular form 142800.2.a.ct
For more coefficients, see the Downloads section to the right.
Modular degree: | 94371840 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
$3$ | $2$ | $I_{32}$ | nonsplit multiplicative | 1 | 1 | 32 | 32 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.204 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1360 = 2^{4} \cdot 5 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 15 & 2 \\ 1262 & 1347 \end{array}\right),\left(\begin{array}{rr} 356 & 885 \\ 295 & 146 \end{array}\right),\left(\begin{array}{rr} 543 & 0 \\ 0 & 1359 \end{array}\right),\left(\begin{array}{rr} 434 & 475 \\ 295 & 1214 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1345 & 16 \\ 1344 & 17 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 1356 & 1357 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 141 & 560 \\ 320 & 501 \end{array}\right)$.
The torsion field $K:=\Q(E[1360])$ is a degree-$4812963840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 25 = 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 47600 = 2^{4} \cdot 5^{2} \cdot 7 \cdot 17 \) |
$5$ | additive | $14$ | \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 20400 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 8400 = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 142800.ct
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714.f3, its twist by $-20$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{-17})\) | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.25176309760000.37 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.3421020160000.7 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | add | split | ord | ord | nonsplit | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 1 | - | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.