Properties

Label 1428.b
Number of curves $1$
Conductor $1428$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1428.b1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1428.b do not have complex multiplication.

Modular form 1428.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} - q^{11} - 7 q^{13} - q^{15} - q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1428.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1428.b1 1428c1 \([0, -1, 0, 35, 73]\) \(17997824/22491\) \(-5757696\) \([]\) \(288\) \(-0.016781\) \(\Gamma_0(N)\)-optimal