Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+y=x^3-x^2-91217x-48998175\)
|
(homogenize, simplify) |
|
\(y^2z+yz^2=x^3-x^2z-91217xz^2-48998175z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-118217664x-2287477451376\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 142373 \) | = | $7 \cdot 11 \cdot 43^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-989867417039247131$ | = | $-1 \cdot 7^{6} \cdot 11^{3} \cdot 43^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{13278380032}{156590819} \) | = | $-1 \cdot 2^{18} \cdot 7^{-6} \cdot 11^{-3} \cdot 37^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1349065327954319209589628219$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.25430647494865070922254156523$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0652168396120913$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.124231021308541$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.11840819702430196048125711222$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.47363278809720784192502844888 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.473632788 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.118408 \cdot 1.000000 \cdot 4}{1^2} \\ & \approx 0.473632788\end{aligned}$$
Modular invariants
Modular form 142373.2.a.f
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1572480 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $7$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
| $11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $43$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3Cs | 3.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 59598 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 33282 \\ 0 & 26489 \end{array}\right),\left(\begin{array}{rr} 1 & 9 \\ 9 & 82 \end{array}\right),\left(\begin{array}{rr} 5806 & 16641 \\ 5031 & 42958 \end{array}\right),\left(\begin{array}{rr} 23561 & 0 \\ 0 & 59597 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 59581 & 18 \\ 59580 & 19 \end{array}\right),\left(\begin{array}{rr} 11095 & 33282 \\ 17802 & 19867 \end{array}\right)$.
The torsion field $K:=\Q(E[59598])$ is a degree-$14387958827827200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/59598\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 20339 = 11 \cdot 43^{2} \) |
| $3$ | good | $2$ | \( 1849 = 43^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 20339 = 11 \cdot 43^{2} \) |
| $11$ | nonsplit multiplicative | $12$ | \( 12943 = 7 \cdot 43^{2} \) |
| $43$ | additive | $926$ | \( 77 = 7 \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 142373.f
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 77.b2, its twist by $-43$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{129}) \) | \(\Z/3\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-43}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.44.1 | \(\Z/2\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-43})\) | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $6$ | 6.0.21296.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.2.4155989904.2 | \(\Z/6\Z\) | not in database |
| $6$ | 6.0.153925552.3 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.166486368269085383484652836662133841895085888160761.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.2695101745628526040446581871570627.1 | \(\Z/9\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ss | ord | ord | nonsplit | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | add | ss |
| $\lambda$-invariant(s) | 4,5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0,0 |
| $\mu$-invariant(s) | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.