Properties

Label 141960be
Number of curves $2$
Conductor $141960$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141960be have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141960be do not have complex multiplication.

Modular form 141960.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} + q^{9} - 6 q^{11} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 141960be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141960.ch1 141960be1 \([0, 1, 0, -293440, -61256272]\) \(565357377316/257985\) \(1275130183541760\) \([2]\) \(1548288\) \(1.8557\) \(\Gamma_0(N)\)-optimal
141960.ch2 141960be2 \([0, 1, 0, -246120, -81622800]\) \(-166792350818/194041575\) \(-1918160118956390400\) \([2]\) \(3096576\) \(2.2023\)