Properties

Label 141960.g
Number of curves $4$
Conductor $141960$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141960.g have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141960.g do not have complex multiplication.

Modular form 141960.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - q^{7} + q^{9} + 4 q^{11} + q^{15} + 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 141960.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141960.g1 141960bd3 \([0, -1, 0, -209616, 26430780]\) \(206081497444/58524375\) \(289265643488640000\) \([2]\) \(1720320\) \(2.0572\)  
141960.g2 141960bd2 \([0, -1, 0, -77796, -8000604]\) \(42140629456/1863225\) \(2302318386950400\) \([2, 2]\) \(860160\) \(1.7107\)  
141960.g3 141960bd1 \([0, -1, 0, -76951, -8190560]\) \(652517349376/1365\) \(105417508560\) \([2]\) \(430080\) \(1.3641\) \(\Gamma_0(N)\)-optimal
141960.g4 141960bd4 \([0, -1, 0, 40504, -30288324]\) \(1486779836/80970435\) \(-400208716177320960\) \([2]\) \(1720320\) \(2.0572\)