Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-3825135x-2871578759\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-3825135xz^2-2871578759z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-61202163x-183842242738\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1174, 587)$ | $0$ | $2$ |
$(2258, -1129)$ | $0$ | $2$ |
Integral points
\( \left(-1174, 587\right) \), \( \left(2258, -1129\right) \)
Invariants
Conductor: | $N$ | = | \( 141570 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $17327094817590944100$ | = | $2^{2} \cdot 3^{14} \cdot 5^{2} \cdot 11^{8} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{4792702134385801}{13416588900} \) | = | $2^{-2} \cdot 3^{-8} \cdot 5^{-2} \cdot 11^{-2} \cdot 13^{-2} \cdot 168601^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5638713173176815706028587335$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.81561753658444145287426432606$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9390381816481935$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.813007675805449$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.10797194689834826663507131292$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L(E,1)$ | ≈ | $0.86377557518678613308057050340 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.863775575 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.107972 \cdot 1.000000 \cdot 128}{4^2} \\ & \approx 0.863775575\end{aligned}$$
Modular invariants
Modular form 141570.2.a.q
For more coefficients, see the Downloads section to the right.
Modular degree: | 4915200 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2863 & 11442 \\ 5718 & 5719 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 17157 & 4 \\ 17156 & 5 \end{array}\right),\left(\begin{array}{rr} 12871 & 5724 \\ 2862 & 11449 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 9359 & 11436 \\ 7278 & 5711 \end{array}\right),\left(\begin{array}{rr} 10297 & 11442 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2203 & 11442 \\ 438 & 5719 \end{array}\right),\left(\begin{array}{rr} 5719 & 0 \\ 0 & 17159 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$255058771968000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 15730 = 2 \cdot 5 \cdot 11^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 28314 = 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $72$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 141570dw
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 4290f2, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-3}, \sqrt{286})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{130}, \sqrt{165})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-55})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | add | split |
$\lambda$-invariant(s) | 4 | - | 0 | - | 1 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.