Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-94229559x+352093421565\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-94229559xz^2+352093421565z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1507672947x+22532471307214\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5661, 4482)$ | $1.7378670224521546408422440779$ | $\infty$ |
| $(22419/4, -22419/8)$ | $0$ | $2$ |
Integral points
\( \left(5635, 1115\right) \), \( \left(5635, -6750\right) \), \( \left(5661, 4482\right) \), \( \left(5661, -10143\right) \), \( \left(175761, 73487682\right) \), \( \left(175761, -73663443\right) \)
Invariants
| Conductor: | $N$ | = | \( 141570 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $13095485205660000$ | = | $2^{5} \cdot 3^{7} \cdot 5^{4} \cdot 11^{6} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{71647584155243142409}{10140000} \) | = | $2^{-5} \cdot 3^{-1} \cdot 5^{-4} \cdot 11^{3} \cdot 13^{-2} \cdot 491^{3} \cdot 769^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9455172577040872243212933271$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1972634769708471065926989197$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0375259015845228$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.623460874759377$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7378670224521546408422440779$ |
|
| Real period: | $\Omega$ | ≈ | $0.22817257509927403582106230540$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 1\cdot2\cdot2^{2}\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.1722687495441280939066647169 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.172268750 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.228173 \cdot 1.737867 \cdot 32}{2^2} \\ & \approx 3.172268750\end{aligned}$$
Modular invariants
Modular form 141570.2.a.bo
For more coefficients, see the Downloads section to the right.
| Modular degree: | 14745600 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $3$ | $2$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $11$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1057 & 968 \\ 748 & 1233 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 408 & 473 \\ 187 & 1134 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 32 & 957 \\ 275 & 1198 \end{array}\right),\left(\begin{array}{rr} 1313 & 8 \\ 1312 & 9 \end{array}\right),\left(\begin{array}{rr} 496 & 803 \\ 979 & 408 \end{array}\right),\left(\begin{array}{rr} 119 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1314 & 1315 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$9732096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
| $3$ | additive | $8$ | \( 15730 = 2 \cdot 5 \cdot 11^{2} \cdot 13 \) |
| $5$ | split multiplicative | $6$ | \( 14157 = 3^{2} \cdot 11^{2} \cdot 13 \) |
| $11$ | additive | $62$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | split multiplicative | $14$ | \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 141570cp
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 390g4, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{66}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.3108820746240000.17 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | split | ord | add | split | ord | ord | ord | ord | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | 4 | - | 2 | 3 | - | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.