Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-62668343x+192519847567\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-62668343xz^2+192519847567z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1002693483x+12320267550822\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-9149, 4574)$ | $0$ | $2$ |
Integral points
\( \left(-9149, 4574\right) \)
Invariants
Conductor: | $N$ | = | \( 141570 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-257397913173007159787520$ | = | $-1 \cdot 2^{20} \cdot 3^{6} \cdot 5 \cdot 11^{9} \cdot 13^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{21075830718885163521}{199306463150080} \) | = | $-1 \cdot 2^{-20} \cdot 3^{3} \cdot 5^{-1} \cdot 11^{-3} \cdot 13^{-4} \cdot 181^{3} \cdot 5087^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3133096760923892829091281444$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.5650558953591491651805337370$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0038593376627314$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.521659223869305$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.098801429157546941012544854034$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 160 $ = $ ( 2^{2} \cdot 5 )\cdot2\cdot1\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.9520571663018776405017941614 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.952057166 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.098801 \cdot 1.000000 \cdot 160}{2^2} \\ & \approx 3.952057166\end{aligned}$$
Modular invariants
Modular form 141570.2.a.df
For more coefficients, see the Downloads section to the right.
Modular degree: | 25804800 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $20$ | $I_{20}$ | split multiplicative | -1 | 1 | 20 | 20 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
$13$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 17160 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 17153 & 8 \\ 17152 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2641 & 11448 \\ 16284 & 11473 \end{array}\right),\left(\begin{array}{rr} 6868 & 5721 \\ 8031 & 11446 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 17154 & 17155 \end{array}\right),\left(\begin{array}{rr} 3116 & 11439 \\ 15057 & 5714 \end{array}\right),\left(\begin{array}{rr} 7873 & 2148 \\ 13590 & 16447 \end{array}\right),\left(\begin{array}{rr} 5719 & 0 \\ 0 & 17159 \end{array}\right),\left(\begin{array}{rr} 12163 & 6438 \\ 5010 & 7867 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[17160])$ is a degree-$255058771968000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/17160\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
$3$ | additive | $6$ | \( 15730 = 2 \cdot 5 \cdot 11^{2} \cdot 13 \) |
$5$ | nonsplit multiplicative | $6$ | \( 14157 = 3^{2} \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $72$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 141570br
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 1430h1, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-55}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-15}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.573985764000000.17 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 | 13 |
---|---|---|---|---|---|
Reduction type | split | add | nonsplit | add | nonsplit |
$\lambda$-invariant(s) | 4 | - | 2 | - | 0 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.