Properties

Label 141570.bu
Number of curves $1$
Conductor $141570$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 141570.bu1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 7 T + 23 T^{2}\) 1.23.h
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141570.bu do not have complex multiplication.

Modular form 141570.2.a.bu

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 2 q^{7} - q^{8} - q^{10} - q^{13} + 2 q^{14} + q^{16} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 141570.bu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141570.bu1 141570cv1 \([1, -1, 0, -8040654, 13983637630]\) \(-3040489341769/2706725970\) \(-51179810055821375630130\) \([]\) \(12418560\) \(3.0545\) \(\Gamma_0(N)\)-optimal