Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-30598200x-64693407564\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-30598200xz^2-64693407564z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-489571203x-4140867655298\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-3110, 21036)$ | $4.2687339119108380563669058962$ | $\infty$ |
$(-11901/4, 11901/8)$ | $0$ | $2$ |
Integral points
\( \left(-3110, 21036\right) \), \( \left(-3110, -17926\right) \)
Invariants
Conductor: | $N$ | = | \( 141570 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $24993896721475502749500$ | = | $2^{2} \cdot 3^{12} \cdot 5^{3} \cdot 11^{7} \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{2453170411237305241}{19353090685500} \) | = | $2^{-2} \cdot 3^{-6} \cdot 5^{-3} \cdot 11^{-1} \cdot 13^{-6} \cdot 59^{3} \cdot 22859^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.1258217150592495136718370356$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3775679343260093959432426282$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9702165942764087$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.33895650317702$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.2687339119108380563669058962$ |
|
Real period: | $\Omega$ | ≈ | $0.064221757724058545356514764722$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot1\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $4.3863295212673682255125435584 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.386329521 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.064222 \cdot 4.268734 \cdot 64}{2^2} \\ & \approx 4.386329521\end{aligned}$$
Modular invariants
Modular form 141570.2.a.g
For more coefficients, see the Downloads section to the right.
Modular degree: | 13271040 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{6}^{*}$ | additive | -1 | 2 | 12 | 6 |
$5$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
$13$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8580 = 2^{2} \cdot 3 \cdot 5 \cdot 11 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 11 & 2 \\ 8530 & 8571 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 5121 & 8572 \end{array}\right),\left(\begin{array}{rr} 7866 & 5017 \\ 7865 & 5006 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 8569 & 12 \\ 8568 & 13 \end{array}\right),\left(\begin{array}{rr} 2641 & 12 \\ 7266 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 7790 & 8577 \\ 4707 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2851 & 8578 \\ 2856 & 8579 \end{array}\right)$.
The torsion field $K:=\Q(E[8580])$ is a degree-$7970586624000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8580\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
$3$ | additive | $2$ | \( 242 = 2 \cdot 11^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 28314 = 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) |
$11$ | additive | $72$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
$13$ | nonsplit multiplicative | $14$ | \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 141570.g
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 4290.p3, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{55}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.334620.8 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{15}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.23191344.1 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5419374348960000.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.13548435872400.11 | \(\Z/12\Z\) | not in database |
$12$ | 12.0.4840545928737024.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.6.279451572537091777493666117806012779137822062500000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | ord | add | nonsplit | ord | ord | ss | ss | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 4 | - | 1 | 1 | - | 1 | 1 | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.