Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-16283350x-25290876500\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-16283350xz^2-25290876500z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-21103222275x-1179654585653250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-2305, -385)$ | $3.0238851775504101658867419515$ | $\infty$ |
$(-9445/4, 9445/8)$ | $0$ | $2$ |
Integral points
\( \left(-2305, 2690\right) \), \( \left(-2305, -385\right) \)
Invariants
Conductor: | $N$ | = | \( 141450 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 23 \cdot 41$ |
|
Discriminant: | $\Delta$ | = | $148095862039531125000$ | = | $2^{3} \cdot 3^{2} \cdot 5^{6} \cdot 23^{8} \cdot 41^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{30558708894178043523937}{9478135170529992} \) | = | $2^{-3} \cdot 3^{-2} \cdot 23^{-8} \cdot 41^{-2} \cdot 31264033^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8467002550990051601714461082$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0419812988819549728710664416$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9997766120882076$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.17977317938531$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.0238851775504101658867419515$ |
|
Real period: | $\Omega$ | ≈ | $0.075157390955808685062890608488$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 1\cdot2\cdot2\cdot2^{3}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.6362771279140981893302016218 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.636277128 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.075157 \cdot 3.023885 \cdot 64}{2^2} \\ & \approx 3.636277128\end{aligned}$$
Modular invariants
Modular form 141450.2.a.o
For more coefficients, see the Downloads section to the right.
Modular degree: | 10223616 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$23$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$41$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.100 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 75440 = 2^{4} \cdot 5 \cdot 23 \cdot 41 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 15 & 2 \\ 75342 & 75427 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 45263 & 0 \\ 0 & 75439 \end{array}\right),\left(\begin{array}{rr} 65601 & 45280 \\ 57080 & 60481 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 75436 & 75437 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 66621 & 45280 \\ 48320 & 29861 \end{array}\right),\left(\begin{array}{rr} 75425 & 16 \\ 75424 & 17 \end{array}\right),\left(\begin{array}{rr} 71676 & 56585 \\ 22635 & 7546 \end{array}\right),\left(\begin{array}{rr} 5671 & 45280 \\ 1630 & 11001 \end{array}\right)$.
The torsion field $K:=\Q(E[75440])$ is a degree-$45226062249984000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/75440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 25 = 5^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 23575 = 5^{2} \cdot 23 \cdot 41 \) |
$5$ | additive | $14$ | \( 5658 = 2 \cdot 3 \cdot 23 \cdot 41 \) |
$23$ | split multiplicative | $24$ | \( 6150 = 2 \cdot 3 \cdot 5^{2} \cdot 41 \) |
$41$ | split multiplicative | $42$ | \( 3450 = 2 \cdot 3 \cdot 5^{2} \cdot 23 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 141450.o
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 5658.h1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-10}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{82})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{41})\) | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.212336640000.33 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.115743170560000.61 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | ss | ord | ord | ord | ord | split | ord | ss | ord | split | ord | ord |
$\lambda$-invariant(s) | 5 | 1 | - | 1,3 | 1 | 1 | 1 | 1 | 2 | 1 | 3,1 | 1 | 2 | 1 | 1 |
$\mu$-invariant(s) | 2 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.