Properties

Label 141204.d
Number of curves $4$
Conductor $141204$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141204.d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 + T\)
\(41\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141204.d do not have complex multiplication.

Modular form 141204.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} + 6 q^{11} - 2 q^{13} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 141204.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141204.d1 141204q4 \([0, -1, 0, -3073428, -2072849256]\) \(2640279346000/3087\) \(3753874378743552\) \([2]\) \(2332800\) \(2.2716\)  
141204.d2 141204q3 \([0, -1, 0, -190513, -32898602]\) \(-10061824000/352947\) \(-26824560664771632\) \([2]\) \(1166400\) \(1.9250\)  
141204.d3 141204q2 \([0, -1, 0, -47628, -1265544]\) \(9826000/5103\) \(6205384177106688\) \([2]\) \(777600\) \(1.7223\)  
141204.d4 141204q1 \([0, -1, 0, 11207, -159446]\) \(2048000/1323\) \(-100550206573488\) \([2]\) \(388800\) \(1.3757\) \(\Gamma_0(N)\)-optimal