Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| 
    \(y^2=x^3-651x-6370\)
    
    
    
         | 
        (homogenize, simplify) | 
| 
    \(y^2z=x^3-651xz^2-6370z^3\)
    
    
    
         | 
        (dehomogenize, simplify) | 
| 
    \(y^2=x^3-651x-6370\)
    
    
    
         | 
        (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-14, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-14, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 14112 \) | = | $2^{5} \cdot 3^{2} \cdot 7^{2}$ | 
     | 
        
| Discriminant: | $\Delta$ | = | $128024064$ | = | $2^{9} \cdot 3^{6} \cdot 7^{3} $ | 
     | 
        
| j-invariant: | $j$ | = | \( 238328 \) | = | $2^{3} \cdot 31^{3}$ | 
     | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) | 
     | 
        ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.41026532428654526028939227605$ | 
     | 
        ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.1453787427312968937474926194$ | 
     | 
        ||
| $abc$ quality: | $Q$ | ≈ | $0.9079782811805067$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.2495912444207122$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ | 
     | 
        
| Mordell-Weil rank: | $r$ | = | $ 0$ | 
     | 
        
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ | 
     | 
| Real period: | $\Omega$ | ≈ | $0.94539637869017537270425360431$ | 
     | 
        
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2 $ | 
     | 
        
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ | 
     | 
        
| Special value: | $ L(E,1)$ | ≈ | $1.8907927573803507454085072086 $ | 
     | 
        
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) | 
     | 
        
BSD formula
$$\begin{aligned} 1.890792757 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.945396 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.890792757\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 6144 | 
     | 
        
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 | 
     | 
        
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_0^{*}$ | additive | -1 | 5 | 9 | 0 | 
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 | 
| $7$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 8.6.0.3 | 
| $3$ | 3Nn | 3.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $72$, genus $3$, and generators
$\left(\begin{array}{rr} 157 & 12 \\ 156 & 13 \end{array}\right),\left(\begin{array}{rr} 7 & 12 \\ 144 & 79 \end{array}\right),\left(\begin{array}{rr} 113 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12 & 1 \\ 155 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 68 & 137 \\ 65 & 160 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 80 & 7 \\ 1 & 148 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9 & 8 \\ 124 & 129 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$2064384$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $4$ | \( 63 = 3^{2} \cdot 7 \) | 
| $3$ | additive | $2$ | \( 1568 = 2^{5} \cdot 7^{2} \) | 
| $7$ | additive | $20$ | \( 288 = 2^{5} \cdot 3^{2} \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 14112cd
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1568i2, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{14}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.24696.1 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.4.159879637499904.32 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.0.39033114624.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.2.208176611328.1 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 
|---|---|---|---|
| Reduction type | add | add | add | 
| $\lambda$-invariant(s) | - | - | - | 
| $\mu$-invariant(s) | - | - | - | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.