Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-30200268x+37464430192\)
|
(homogenize, simplify) |
\(y^2z=x^3-30200268xz^2+37464430192z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-30200268x+37464430192\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1031541, 1047667775)$ | $9.3200395187178987307063659535$ | $\infty$ |
$(1316, 0)$ | $0$ | $2$ |
$(4718, 0)$ | $0$ | $2$ |
Integral points
\( \left(-6034, 0\right) \), \( \left(1316, 0\right) \), \( \left(4718, 0\right) \), \((1031541,\pm 1047667775)\)
Invariants
Conductor: | $N$ | = | \( 141120 \) | = | $2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $1156489757554649333760000$ | = | $2^{26} \cdot 3^{14} \cdot 5^{4} \cdot 7^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{135487869158881}{51438240000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3166906357572745452033372376$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75470864605564508282719006523$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0190986885579905$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.337078048308222$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.3200395187178987307063659535$ |
|
Real period: | $\Omega$ | ≈ | $0.079152450141353193666641908110$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.9016317065660791556590902085 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.901631707 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.079152 \cdot 9.320040 \cdot 128}{4^2} \\ & \approx 5.901631707\end{aligned}$$
Modular invariants
Modular form 141120.2.a.bd
For more coefficients, see the Downloads section to the right.
Modular degree: | 18874368 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{16}^{*}$ | additive | 1 | 6 | 26 | 8 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 16.96.0.46 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 15 & 16 \\ 74 & 289 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1353 & 16 \\ 1076 & 121 \end{array}\right),\left(\begin{array}{rr} 559 & 1672 \\ 0 & 1679 \end{array}\right),\left(\begin{array}{rr} 1667 & 1672 \\ 1360 & 1063 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1439 & 1664 \\ 234 & 1583 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1665 & 16 \\ 1664 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[1680])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 15680 = 2^{6} \cdot 5 \cdot 7^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 28224 = 2^{6} \cdot 3^{2} \cdot 7^{2} \) |
$7$ | additive | $32$ | \( 2880 = 2^{6} \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 141120lj
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 210e2, its twist by $168$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.12745506816.7 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.8.7965941760000.6 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.497871360000.7 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.63456228123711897600000000.20 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | nonsplit | add | ord | ord | ord | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.