Properties

Label 141120ce
Number of curves $4$
Conductor $141120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ce1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141120ce have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141120ce do not have complex multiplication.

Modular form 141120.2.a.ce

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + 4 q^{11} + 2 q^{13} - 2 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 141120ce

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.pd3 141120ce1 \([0, 0, 0, -8967, 326536]\) \(14526784/15\) \(82335476160\) \([2]\) \(196608\) \(1.0124\) \(\Gamma_0(N)\)-optimal
141120.pd2 141120ce2 \([0, 0, 0, -11172, 153664]\) \(438976/225\) \(79042057113600\) \([2, 2]\) \(393216\) \(1.3590\)  
141120.pd4 141120ce3 \([0, 0, 0, 41748, 1190896]\) \(2863288/1875\) \(-5269470474240000\) \([2]\) \(786432\) \(1.7056\)  
141120.pd1 141120ce4 \([0, 0, 0, -99372, -11947376]\) \(38614472/405\) \(1138205622435840\) \([2]\) \(786432\) \(1.7056\)