Show commands: SageMath
Rank
The elliptic curves in class 141120bk have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 141120bk do not have complex multiplication.Modular form 141120.2.a.bk
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 141120bk
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
141120.mq3 | 141120bk1 | \([0, 0, 0, -49376712, 133521363416]\) | \(151591373397612544/32558203125\) | \(2859408167691600000000\) | \([2]\) | \(11796480\) | \(3.1119\) | \(\Gamma_0(N)\)-optimal |
141120.mq2 | 141120bk2 | \([0, 0, 0, -54889212, 101864178416]\) | \(13015144447800784/4341909875625\) | \(6101217571044535511040000\) | \([2, 2]\) | \(23592960\) | \(3.4585\) | |
141120.mq4 | 141120bk3 | \([0, 0, 0, 159436788, 702577091216]\) | \(79743193254623804/84085819746075\) | \(-472626927417822919070515200\) | \([2]\) | \(47185920\) | \(3.8051\) | |
141120.mq1 | 141120bk4 | \([0, 0, 0, -357415212, -2524908574384]\) | \(898353183174324196/29899176238575\) | \(168056348152820420940595200\) | \([2]\) | \(47185920\) | \(3.8051\) |