Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-1455300x-166698000\)
|
(homogenize, simplify) |
\(y^2z=x^3-1455300xz^2-166698000z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1455300x-166698000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-35720/81, 14383900/729)$ | $9.2748360433690775856971418371$ | $\infty$ |
$(1260, 0)$ | $0$ | $2$ |
Integral points
\( \left(1260, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 1411200 \) | = | $2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $185254821360000000000$ | = | $2^{13} \cdot 3^{9} \cdot 5^{10} \cdot 7^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{1149984}{625} \) | = | $2^{5} \cdot 3^{3} \cdot 5^{-4} \cdot 11^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.5799165435799738199816370229$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.77262614927242270695318774137$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.2404847183915741$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.826691987725865$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $9.2748360433690775856971418371$ |
|
Real period: | $\Omega$ | ≈ | $0.14662001674406297462216949860$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $10.879012927817703560658121969 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.879012928 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.146620 \cdot 9.274836 \cdot 32}{2^2} \\ & \approx 10.879012928\end{aligned}$$
Modular invariants
Modular form 1411200.2.a.lq
For more coefficients, see the Downloads section to the right.
Modular degree: | 26542080 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}^{*}$ | additive | -1 | 7 | 13 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 24.12.0.bl.1, level \( 24 = 2^{3} \cdot 3 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 21 & 4 \\ 20 & 5 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 11 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 20 & 1 \\ 7 & 0 \end{array}\right),\left(\begin{array}{rr} 4 & 1 \\ 17 & 18 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[24])$ is a degree-$6144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/24\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \) |
$3$ | additive | $2$ | \( 156800 = 2^{7} \cdot 5^{2} \cdot 7^{2} \) |
$5$ | additive | $18$ | \( 56448 = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
$7$ | additive | $26$ | \( 28800 = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1411200.lq
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 5760.d1, its twist by $140$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.