Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+602700x+87122000\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+602700xz^2+87122000z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+602700x+87122000\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(560, 24500)$ | $1.5364981260683467907206992912$ | $\infty$ |
| $(25060, 3969000)$ | $2.9567004551412792305291727005$ | $\infty$ |
| $(-140, 0)$ | $0$ | $2$ |
Integral points
\( \left(-140, 0\right) \), \((301,\pm 17199)\), \((560,\pm 24500)\), \((805,\pm 33075)\), \((949,\pm 38907)\), \((1360,\pm 58500)\), \((25060,\pm 3969000)\), \((53860,\pm 12501000)\)
Invariants
| Conductor: | $N$ | = | \( 1411200 \) | = | $2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-17290449993600000000$ | = | $-1 \cdot 2^{13} \cdot 3^{8} \cdot 5^{8} \cdot 7^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{2205472}{1575} \) | = | $2^{5} \cdot 3^{-2} \cdot 5^{-2} \cdot 7^{-1} \cdot 41^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3798115923130477160570257764$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.69807802837232138802898767864$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8163325011222861$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.6399227427637384$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.2010457950126704472019871407$ |
|
| Real period: | $\Omega$ | ≈ | $0.13901763591949622066306919073$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $18.688622553990463102433343470 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 18.688622554 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.139018 \cdot 4.201046 \cdot 128}{2^2} \\ & \approx 18.688622554\end{aligned}$$
Modular invariants
Modular form 1411200.2.a.ek
For more coefficients, see the Downloads section to the right.
| Modular degree: | 23592960 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{2}^{*}$ | additive | -1 | 7 | 13 | 0 |
| $3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $5$ | $4$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
| $7$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 840 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 837 & 4 \\ 836 & 5 \end{array}\right),\left(\begin{array}{rr} 529 & 316 \\ 104 & 735 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 337 & 4 \\ 674 & 9 \end{array}\right),\left(\begin{array}{rr} 281 & 4 \\ 562 & 9 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 419 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 482 & 1 \\ 599 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[840])$ is a degree-$5945425920$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/840\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $8$ | \( 156800 = 2^{7} \cdot 5^{2} \cdot 7^{2} \) |
| $5$ | additive | $18$ | \( 56448 = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
| $7$ | additive | $32$ | \( 28800 = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 1411200.ek
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 13440.g2, its twist by $-840$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.