Show commands: SageMath
Rank
The elliptic curves in class 141120.ek have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 141120.ek do not have complex multiplication.Modular form 141120.2.a.ek
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 141120.ek
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
141120.ek1 | 141120pp3 | \([0, 0, 0, -1317708, 510169968]\) | \(416832723/56000\) | \(33994407923417088000\) | \([2]\) | \(2654208\) | \(2.4752\) | |
141120.ek2 | 141120pp1 | \([0, 0, 0, -329868, -72831248]\) | \(4767078987/6860\) | \(5712366214840320\) | \([2]\) | \(884736\) | \(1.9259\) | \(\Gamma_0(N)\)-optimal |
141120.ek3 | 141120pp2 | \([0, 0, 0, -235788, -115242512]\) | \(-1740992427/5882450\) | \(-4898354029225574400\) | \([2]\) | \(1769472\) | \(2.2725\) | |
141120.ek4 | 141120pp4 | \([0, 0, 0, 2069172, 2700803952]\) | \(1613964717/6125000\) | \(-3718138366623744000000\) | \([2]\) | \(5308416\) | \(2.8218\) |