Properties

Label 141120.ek
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ek1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 141120.ek have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 141120.ek do not have complex multiplication.

Modular form 141120.2.a.ek

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 141120.ek

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.ek1 141120pp3 \([0, 0, 0, -1317708, 510169968]\) \(416832723/56000\) \(33994407923417088000\) \([2]\) \(2654208\) \(2.4752\)  
141120.ek2 141120pp1 \([0, 0, 0, -329868, -72831248]\) \(4767078987/6860\) \(5712366214840320\) \([2]\) \(884736\) \(1.9259\) \(\Gamma_0(N)\)-optimal
141120.ek3 141120pp2 \([0, 0, 0, -235788, -115242512]\) \(-1740992427/5882450\) \(-4898354029225574400\) \([2]\) \(1769472\) \(2.2725\)  
141120.ek4 141120pp4 \([0, 0, 0, 2069172, 2700803952]\) \(1613964717/6125000\) \(-3718138366623744000000\) \([2]\) \(5308416\) \(2.8218\)