Properties

Label 14112.by
Number of curves $4$
Conductor $14112$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14112.by have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14112.by do not have complex multiplication.

Modular form 14112.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{11} + 2 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 14112.by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14112.by1 14112v2 \([0, 0, 0, -14259, -655130]\) \(7301384/3\) \(131736761856\) \([2]\) \(18432\) \(1.0960\)  
14112.by2 14112v3 \([0, 0, 0, -7644, 252448]\) \(140608/3\) \(1053894094848\) \([2]\) \(18432\) \(1.0960\)  
14112.by3 14112v1 \([0, 0, 0, -1029, -6860]\) \(21952/9\) \(49401285696\) \([2, 2]\) \(9216\) \(0.74947\) \(\Gamma_0(N)\)-optimal
14112.by4 14112v4 \([0, 0, 0, 3381, -50078]\) \(97336/81\) \(-3556892570112\) \([2]\) \(18432\) \(1.0960\)