Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-27885x+2190409\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-27885xz^2+2190409z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-27885x+2190409\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 139932 \) | = | $2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 23$ |
|
| Discriminant: | $\Delta$ | = | $-685000885441392$ | = | $-1 \cdot 2^{4} \cdot 3^{6} \cdot 13^{6} \cdot 23^{3} $ |
|
| j-invariant: | $j$ | = | \( -\frac{42592000}{12167} \) | = | $-1 \cdot 2^{8} \cdot 5^{3} \cdot 11^{3} \cdot 23^{-3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5618176466832463528864455230$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.50101223656822529731033152340$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.87184842279915$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.605592116265346$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.48339441269243793602051292346$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 3 $ = $ 1\cdot1\cdot1\cdot3 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.4501832380773138080615387704 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.450183238 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.483394 \cdot 1.000000 \cdot 3}{1^2} \\ & \approx 1.450183238\end{aligned}$$
Modular invariants
Modular form 139932.2.a.n
For more coefficients, see the Downloads section to the right.
| Modular degree: | 421200 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $IV$ | additive | -1 | 2 | 4 | 0 |
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $13$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $23$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1794 = 2 \cdot 3 \cdot 13 \cdot 23 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 1103 & 0 \\ 0 & 1793 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 1789 & 6 \\ 1788 & 7 \end{array}\right),\left(\begin{array}{rr} 1078 & 1677 \\ 611 & 545 \end{array}\right),\left(\begin{array}{rr} 235 & 1248 \\ 429 & 157 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1794])$ is a degree-$126034900992$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1794\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 34983 = 3^{2} \cdot 13^{2} \cdot 23 \) |
| $3$ | additive | $6$ | \( 676 = 2^{2} \cdot 13^{2} \) |
| $13$ | additive | $86$ | \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \) |
| $23$ | split multiplicative | $24$ | \( 6084 = 2^{2} \cdot 3^{2} \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 139932.n
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 92.b1, its twist by $-39$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{13}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.23.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.12167.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.76877424.1 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.1162213.1 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | 12.0.5910138320875776.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | 12.0.714540961348201.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.2419562103053567781010551982454655169155072.1 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.67261025409713101629101069070336.2 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | ss | ord | ss | add | ord | ord | split | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | 0,0 | 0 | 0,0 | - | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | - | - | 0,0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.