Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+1646x-15737\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+1646xz^2-15737z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+2133189x-740625066\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(222, 3251)$ | $1.7785181294607935263767229701$ | $\infty$ |
Integral points
\( \left(222, 3251\right) \), \( \left(222, -3473\right) \)
Invariants
| Conductor: | $N$ | = | \( 139523 \) | = | $41^{2} \cdot 83$ |
|
| Discriminant: | $\Delta$ | = | $-394258652003$ | = | $-1 \cdot 41^{6} \cdot 83 $ |
|
| j-invariant: | $j$ | = | \( \frac{103823}{83} \) | = | $47^{3} \cdot 83^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.91291873649101029633489403808$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.94386729686114360559848764844$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.7733176993165508$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.8559782866910868$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.7785181294607935263767229701$ |
|
| Real period: | $\Omega$ | ≈ | $0.52700350250377944325109263841$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.7491411339692337326847825567 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.749141134 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.527004 \cdot 1.778518 \cdot 4}{1^2} \\ & \approx 3.749141134\end{aligned}$$
Modular invariants
Modular form 139523.2.a.a
For more coefficients, see the Downloads section to the right.
| Modular degree: | 140800 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $41$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $83$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 166 = 2 \cdot 83 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 165 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 165 & 2 \\ 164 & 3 \end{array}\right),\left(\begin{array}{rr} 85 & 2 \\ 85 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[166])$ is a degree-$140639184$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/166\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $41$ | additive | $842$ | \( 83 \) |
| $83$ | nonsplit multiplicative | $84$ | \( 1681 = 41^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 139523.a consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 83.a1, its twist by $41$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.83.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.571787.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 83 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ss | nonsplit |
| $\lambda$-invariant(s) | 5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1,1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.