Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-74405x-7793153\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-74405xz^2-7793153z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1190475x-499952250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1871/4, 59875/8)$ | $6.2145842867857297604378014284$ | $\infty$ |
| $(-629/4, 625/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 13950 \) | = | $2 \cdot 3^{2} \cdot 5^{2} \cdot 31$ |
|
| Discriminant: | $\Delta$ | = | $706218750$ | = | $2 \cdot 3^{6} \cdot 5^{6} \cdot 31 $ |
|
| j-invariant: | $j$ | = | \( \frac{3999236143617}{62} \) | = | $2^{-1} \cdot 3^{3} \cdot 11^{3} \cdot 13^{3} \cdot 31^{-1} \cdot 37^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.2459474150320705059601828101$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.10807768551903452703781947497$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0755914478549309$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.743195227870537$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.2145842867857297604378014284$ |
|
| Real period: | $\Omega$ | ≈ | $0.28906764267883761669727026435$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.1857409200403849884196402737 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $4$ = $2^2$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.185740920 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.289068 \cdot 6.214584 \cdot 4}{2^2} \\ & \approx 7.185740920\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 32768 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $31$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 2479 & 0 \\ 0 & 3719 \end{array}\right),\left(\begin{array}{rr} 3256 & 1155 \\ 1275 & 2296 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1336 & 225 \\ 1635 & 1126 \end{array}\right),\left(\begin{array}{rr} 3496 & 2235 \\ 2805 & 3226 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 3714 & 3715 \end{array}\right),\left(\begin{array}{rr} 3713 & 8 \\ 3712 & 9 \end{array}\right),\left(\begin{array}{rr} 743 & 0 \\ 0 & 3719 \end{array}\right)$.
The torsion field $K:=\Q(E[3720])$ is a degree-$658243584000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 6975 = 3^{2} \cdot 5^{2} \cdot 31 \) |
| $3$ | additive | $6$ | \( 1550 = 2 \cdot 5^{2} \cdot 31 \) |
| $5$ | additive | $14$ | \( 558 = 2 \cdot 3^{2} \cdot 31 \) |
| $31$ | nonsplit multiplicative | $32$ | \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 13950.ch
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a1, its twist by $-15$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{62}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-465}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-30}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-30}, \sqrt{62})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.20197404270000.1 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | add | ss | ss | ord | ord | ord | ord | ord | nonsplit | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 10 | - | - | 1,1 | 3,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | - | - | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.