Show commands: SageMath
Rank
The elliptic curves in class 139425.f have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 139425.f do not have complex multiplication.Modular form 139425.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 139425.f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 139425.f1 | 139425n3 | \([1, 1, 1, -29000488, 60099209906]\) | \(35765103905346817/1287\) | \(97064112234375\) | \([2]\) | \(5505024\) | \(2.6283\) | |
| 139425.f2 | 139425n6 | \([1, 1, 1, -12713113, -16900020844]\) | \(3013001140430737/108679952667\) | \(8196521463322650046875\) | \([2]\) | \(11010048\) | \(2.9749\) | |
| 139425.f3 | 139425n4 | \([1, 1, 1, -2002738, 729256406]\) | \(11779205551777/3763454409\) | \(283835556444545015625\) | \([2, 2]\) | \(5505024\) | \(2.6283\) | |
| 139425.f4 | 139425n2 | \([1, 1, 1, -1812613, 938393906]\) | \(8732907467857/1656369\) | \(124921512445640625\) | \([2, 2]\) | \(2752512\) | \(2.2817\) | |
| 139425.f5 | 139425n1 | \([1, 1, 1, -101488, 17808656]\) | \(-1532808577/938223\) | \(-70759737818859375\) | \([2]\) | \(1376256\) | \(1.9351\) | \(\Gamma_0(N)\)-optimal |
| 139425.f6 | 139425n5 | \([1, 1, 1, 5665637, 4977536156]\) | \(266679605718863/296110251723\) | \(-22332306687638154796875\) | \([2]\) | \(11010048\) | \(2.9749\) |